

Application of Black Turmeric Rhizome (*Curcuma aeruginosa* Roxb) Ethanol Extract to Treat *Aeromonas hydrophila* Infection in Catfish (*Clarias gariepinus*)

Riri Mulfiani, Indriyani Nur, La Ode Baytul Abidin*

Aquaculture Department, Fisheries and Marine Science Faculty, Halu Oleo University HEA Mokodompit Street, Anduonohu, Kendari City, Indonesia

Correspondence:

baytul.abidin@uho.ac.id

Received:

November 3rd, 2025

Accepted:

November 8th, 2025

Published:

November 27th, 2025

Keywords:

Catfish, *Curcuma* aeruginosa, Ethanol Extract, Aeromonas hydrophila

Aeromonas hydrophila is a pathogenic bacterium that frequently attacks, causes death, and harms catfish farmers. The continuous use of antibiotics for disease control has been shown to have negative impacts on pathogenic bacterial resistance, antibiotic residues in fish, aquatic environmental pollution, food safety, and causes allergies in human consumers. The use of phytopharmaceuticals is known to be more environmentally friendly and sustainable because they contain active compounds that are more easily degraded, thus leaving no synthetic antibiotic residues in fish tissues and water. This research aimed to determine the effect of black turmeric (Curcuma aeruginosa Roxb) rhizome ethanol extract on treating A. hydrophila infection in catfish. Fish were raised for 14 days. For the first seven days, they were kept under normal conditions. On day 7, the fish were infected with A. hydrophila. On day 8, the diseased fish were immersed in black turmeric rhizome ethanol extract. The experiment used group randomized design with treatment of control or without black turmeric extract (BTO), 35 mg/L, 40 mg/L and 45 mg/L black turmeric extract (BT35, BT40, and BT45). The result showed that treatments were not significantly different (P>0,05) on recovery rate, survival rate, and WBC, but significantly different in hematocrit percentage (P<0,05). The highest of fish recovery rate and survival rate (100%) were obtained in BT40. This research concluded that immersion dosage of 40 mg/L black turmeric rhizome ethanol extract could treating catfish infected with A. hydrophila.

INTRODUCTION

Diseases caused by bacterial infections are a major problem in fish farming. *Aeromonas hydrophila* is a pathogen that frequently causes infectious diseases in freshwater fish, including catfish (*Clarias gariepinus*). The disease caused by this bacterium is known as Motile Aeromonas Septicemia (MAS). Infected catfish exhibit clinical symptoms such as skin inflammation, skin ulcers that penetrate the muscle, fin damage, and hemorrhage (Abidin *et al.*, 2022; Armin *et al.*, 2023). This disease has been reported to cause mass mortality in farmed fish (Zhang *et al.*, 2016).

Control measures for infectious diseases in fish generally still use antibiotics. However, the continuous use of antibiotics has been shown to have negative impacts on pathogenic bacteria, the treated fish, the environment, and even consumers. The use of antibiotics to control infectious diseases has been reported to cause bacterial resistance to commonly used antibiotics (Suyamud *et al.*, 2024), the emergence of antibiotic residues in fish, which impact food safety and cause allergies in humans as consumers (Rico & Van den Brink, 2014; Liu *et al.*, 2017). Furthermore, antibiotics that are not fully decomposed in aquatic systems can cause aquatic environmental pollution, disrupt the balance of aquatic ecosystems, alter the composition of natural microbiota in the water, and harm non-target organisms such as plankton (Cherian *et al.*, 2023).

To mitigate the negative impacts of antibiotic use in aquaculture, the use of medicinal plants, also known as phytopharmaceuticals, can be an alternative solution for fish treatment. The use of phytopharmaceuticals is known to be more environmentally friendly and sustainable because they contain active compounds that are more easily degraded, thus leaving no synthetic antibiotic residues in fish tissues and water (Awad & Awaad, 2017). Furthermore, phytopharmaceuticals also have immunostimulant effects (Harikrishnan *et al.*, 2011) and a complex mode of action, enabling them to simultaneously possess antibacterial, antiparasitic, antifungal, and antiviral properties (Yilmaz & Tan, 2022).

One of phytopharmaceutical whose efficacy in treating fish diseases can be tested is black turmeric. Phytochemical tests of black turmeric rhizome extract revealed that it contains active compounds such as alkaloids, flavonoids, terpenoids, and saponins (Amaliah, 2019; Marliani et al., 2021). Alkaloids are known to work by inhibiting bacterial metabolism, inhibiting nucleic acid and protein synthesis, inhibiting cell wall synthesis, and disrupting cell membrane permeability (Yan et al., 2021). In controlling bacterial infections, flavonoids play a role in inhibiting the gyrase enzyme, thus preventing the continuation of bacterial DNA replication (Yan et al., 2024). Flavonoids are also useful as anti-inflammatories, thus suppressing the impact of lesions that occur during infection (Choy et al., 2019). Terpenoids have antitumor, anti-inflammatory, antibacterial, antiviral, antioxidant, anti-aging, and neuroprotective effects (Yang et al., 2020). Black turmeric also contains curcuminoids, which have therapeutic, anti-inflammatory, antioxidant, and anticancer effects (Ravindran et al., 2013). Black turmeric is also known to contain essential oils with antibiotic properties (Kamazeri et al., 2012). Based on the description above, this research aimed to determine the effect of different concentrations of black turmeric extract on treating diseases caused by A. hydrophila infection in catfish.

One of phytopharmaceutical worthy of testing for its efficacy in treating fish diseases is black turmeric. The results of phytochemical tests on black turmeric rhizome extract revealed that it contains active compounds such as alkaloids, flavonoids, terpenoids, and saponins (Amaliah, 2019; Marliani *et al.*, 2021). Alkaloids are known to work by inhibiting bacterial metabolism, inhibiting nucleic acid and protein synthesis, inhibiting cell wall synthesis, and disrupting cell membrane permeability (Yan *et al.*, 2021). In controlling bacterial infections, flavonoids play a role in inhibiting the gyrase enzyme, thus preventing the continuation of bacterial DNA replication (Yan *et al.*, 2024). Flavonoids are also useful as anti-inflammatories, thus suppressing the impact of lesions that occur during infection (Choy *et al.*, 2019). Terpenoids have antitumor, anti-inflammatory, antibacterial, antiviral, antioxidant, anti-aging, and neuroprotective effects (Yang *et al.*, 2020). Black turmeric also contains curcuminoids, which have therapeutic, anti-inflammatory, antioxidant, and anticancer effects (Ravindran *et al.*, 2013). Black turmeric is also known to contain essential oils with antibiotic properties

Journal of Fish Health, 5(4), 562-571 (2025)

Mulfiani *et al*. (2025)

https://doi.org/10.29303/jfh.v5i4.8609

(Kamazeri *et al.*, 2012). Based on the description above, this study aimed to determine the effect of using black turmeric extract to treat diseases caused by *A. hydrophila* infections in catfish.

METHODS

Materials

The test animals used were catfish fingerlings weighing between 16 to 30 grams, totaling 60 individuals, obtained from a Community Hatchery Unit in Cialam Jaya Village, South Konawe Regency. The *Curcuma aeruginosa* (black turmeric) rhizomes used were sourced from a traditional market in Kendari City. During the rearing period, the fish were fed with commercial pellet feed containing approximately 35% protein.

Research Design

This research employed a Group Randomized Design consisting of four treatments and three groups, detailed as follows:

- BTO : Control group (no *C. aeruginosa* extract)
- BT35: Treatment with 35 mg/L C. aeruginosa extract
- BT40 : Treatment with 40 mg/L C. aeruginosa extract
- BT45 : Treatment with 45 mg/L *C. aeruginosa* extract

Note: Dosage determination is based on the results of the Brine Shrimp Lethality Test (BSLT) of *C. aeruginosa* extract at a concentration of 37.73 mg/L (Zulfiah *et al.*, 2020). Grouping based on fish weight:

Group 1 : Fish weighing 16–20 g
Group 2 : Fish weighing 21–25 g
Group 3 : Fish weighing 26–30 g

Preparation of Rearing Containers

The containers used were aquariums measuring $30 \text{ cm} \times 30 \text{ cm} \times 30 \text{ cm}$, each equipped with an aeration system (12 units total). Every aquarium was thoroughly cleaned using a brush and detergent, then rinsed with clean water. Afterward, each aquarium was filled with water up to a height of 20 cm. The test fish were introduced into the tanks 24 hours later, with five fish placed in each container.

Curcuma aeruginosa Rhizome Extraction

The rhizomes of black turmeric were first cleaned, then thinly sliced and oven-dried at approximately 50°C for four days. Once dried, the rhizomes were ground into a fine powder. The extraction process used the maceration method, where 500 grams of rhizome powder were soaked in 1000 ml of ethanol for 24 hours, repeated three times. The resulting solution was filtered using filter paper. The filtrate was then concentrated using a rotary evaporator at ±50°C and further dried in an oven at the same temperature to obtain a paste-form extract.

Fish Rearing and Bacterial Challenge Test

The test fish were reared for 14 days. During the first 7 days, the fish were reared under normal conditions. On the seventh day, the fish were infected with *A. hydrophila* at a concentration of 10⁷ CFU/mL, administered via intramuscular injection. After the injection, the fish were monitored daily for the next 7 days. Throughout the maintenance period, fish were fed at 5% of their biomass, with feeding done twice a day.

Journal of Fish Health, 5(4), 562-571 (2025)

Mulfiani *et al*. (2025)

https://doi.org/10.29303/jfh.v5i4.8609

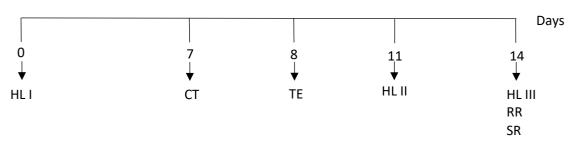


Figure 1. Treatment Time and Research Parameters Observation

Where:

CT : challenge test with A. hydrophila

TE : treatment with black turmeric rhizome extract
OB I : first observation of hematocrit and leukocyte
OB II : second observation of hematocrit and leukocyte
OB III : third observation of hematocrit and leukocyte

RR : recovery rate SR : survival rate

Treatment Procedure

Treatment was carried out by immersion. The catfish that had been injected with *A. hydrophila* for 24 hours were immersed in black turmeric ethanol extract at concentrations of 0 mg/L, 35 mg/L, 40 mg/L, and 45 mg/L for 30 minutes. After immersion, the fish were returned to their respective rearing containers.

Observation

Recovery Rate (RR)

RR (%) = (Number of recovered fish / Number of sick fish) \times 100%

Note: Recovered fish are those that show visible signs of improvement and no longer exhibit clinical symptoms (Hasmin *et al.*, 2025).

Survival Rate (SR)

$$SR (\%) = \frac{Nt}{N0} \times 100\%$$

Where:

Nt = Number of fish alive at the end of the rearing period

NO = Number of fish at the beginning of the rearing period (Hasmin et al., 2025)

Hematocrit

Hematocrit (He) is obtained using the method of Anderson & Siwicki (1995). A blood sample is drawn into a microhematocrit capillary tube, filling three-quarters of its length. Crystoceal seals one end of the tube to a depth of approximately 1 mm, and the tube is then centrifuged at 5,000 rpm for 5 minutes. A ruler is used to measure the hematocrit level in the tube. The formula used to calculate the hematocrit percentage is as follows:

$$He(\%) = \frac{a}{b} \times 100\%$$

Leukocyte Count (WBC)

The leukocyte count/white blood cells (WBC) is determined using the method of Blaxhall & Daisley (1973). A white bead helps draw blood into the pipette when it reaches the 0.5 mark. Then, Turk's solution is added until the mixture reaches the 11 mark. The pipette is shaken in a figure-eight motion for about 3-5 minutes to mix the solution thoroughly. After the first drop of blood is discarded, the next drop is placed on a hemocytometer equipped with a cover glass. A microscope is used to count leukocytes. Counting takes place inside four large 1 mm × 1 mm squares. The formula for calculating the number of leukocytes is as follows:

WBC = $n \times 50 \text{ cells/mm}^3$

Where:

WBC : Number of leukocytes in 1 μL (cells/mm³)
 n : Number of leukocytes in 4 counting chambers
 V : Volume of 4 counting chambers (0.4 mm³)

P : Dilution factor (20×)

Data Analysis

Data on blood parameters (hematocrit and WBC), recovery rate, and survival rate were analyzed using Analysis of Variance (ANOVA). If significant differences were found, further analysis was conducted using the Least Significant Difference (LSD) test.

RESULTS

In general, catfish infected with *A. hydrophila* and then treated with black turmeric rhizome ethanol extract showed better development compared to the control. Although statistical analysis showed no significant differences between treatments in either parameter (P>0.05), BT40 was proven to increase the recovery and survival rates of the test fish to 100% (Figures 2 and 3).

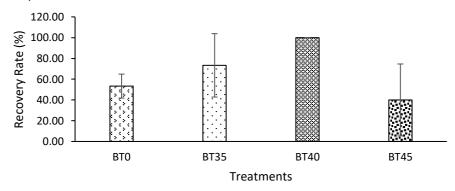


Figure 2. Recovery Rate of Catfish After Being Infected by *A. hydrophila* and then Treated with *C. aeruginosa* Ethanol Extract

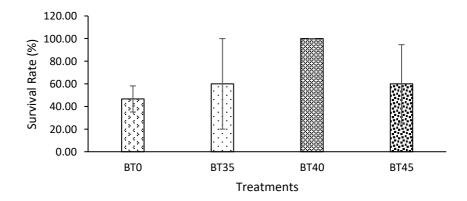


Figure 3. Survival Rate of Catfish at the End of Rearing

Observations on day 11 showed a decrease in the hematocrit in catfish in all treatments. However, the hematocrit in fish treated with black turmeric rhizome ethanol extract was

higher and significantly different from the control (P<0.05). The same pattern was again observed on day 14 (Figure 4).

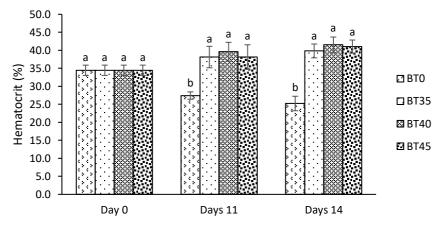


Figure 4. Hematocrit of Catfish Before and After Infection by A. hydrophila

The WBC of catfish in this observation showed a decrease in the number observed on both days 11 and 14. On day 14, actually larger WBC were obtained in the three treatments given black turmeric rhizome ethanol extract, but the results of the analysis showed that there was no significant difference between the treatments (P>0.05).

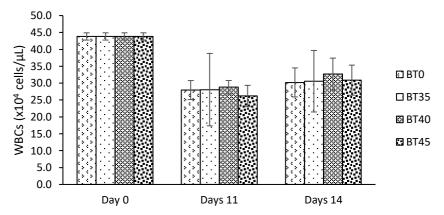


Figure 5. The WBC of Catfish Before and After Infection by A. hydrophila

DISCUSSION

Observations of the recovery rate in this study were conducted based on visual diagnosis by observing changes in the clinical symptoms of the test fish, where fish that began to recover experienced active movement again, a return to normal appetite, hemorrhagic and ulcer wounds in the test fish had healed (Abidin *et al.*, 2022; Armin *et al.*, 2023). The BT40 treatment resulted in the highest fish recovery rate, reaching 100% after immersion in black turmeric rhizome extract. This value obtained was better than the BT35 and BT45 treatments, which were 73.3 and 40.0, respectively. This indicates that the BT40 treatment had a more optimal impact on the recovery of the test fish from MAS disease. The active compounds contained in the ethanol extract of black turmeric are thought to have eliminated pathogenic bacteria. According to Amaliah (2019) and Marliani *et al.* (2021), black turmeric contains active compounds such as alkaloids, flavonoids, terpenoids, and saponins. Xie *et al.* (2015) explained that the direct antibacterial activity of flavonoids is primarily associated with the mechanisms of inhibition of nucleic acid synthesis, inhibition of cytoplasmic membrane function, and

https://doi.org/10.29303/jfh.v5i4.8609

inhibition of bacterial energy metabolism. Thus, treatment with ethanol extract of black turmeric rhizome has successfully increased the recovery of catfish infected with *A. hydrophila*. The BT45 treatment resulted in a lower recovery rate than the BT0 (control) treatment, suggesting that the dose had reached an overdose level for the test animals. However, excessive application of medicinal plant extracts affects tissue damage and physiological activity of the fish (George *et al.*, 2023). In this study, the recovery rate appeared to significantly contribute to the survival rate of the fish. The BT40 treatment, which resulted in a 100% recovery rate, also resulted in a 100% survival rate of the test fish.

The hematocrit level of catfish before being challenged with pathogenic bacteria was 34.5%. On days 4 and 7 post-challenge, the hematocrit level of BTO fish decreased compared to before the challenge. Meanwhile, in the BT35, BT40, and BT45 treatments, the hematocrit level increased. Hemorrhage and ulcers due to A. hydrophila infection are suspected to be responsible for the decreased hematocrit level (Abidin et al., 2002). In addition, low hematocrit levels may also occur because A. hydrophila secretes hemolysin, which causes hemolysis of erythrocytes (Kusdarwati et al., 2021; Xiong et al., 2021). Lower hematocrit levels can indicate an unhealthy condition of the fish. Treatment with black turmeric rhizome extract on catfish infected with A. hydrophila bacteria has contributed to maintaining hematocrit levels. The content of active compounds such as flavonoids, terpenoids, and curcuminoids with anti-inflammatory properties (Choy et al., 2019; Yang et al., 2020; Ravindran et al., 2013) is thought to have prevented inflammation in erythrocyte cells so that hematocrit levels are maintained in better conditions compared to the control (BTO). In addition, active compounds with antimicrobial properties such as alkaloids, flavonoids, and terpenoids (Shamsudin et al., 2022; Das & Ruhal, 2025) are thought to play a role in eliminating pathogenic cells, thereby preventing the impact of A. hydrophila attacks on erythrocytes.

The WBC are cells that play a role in the immune system. Bacterial infections in fish can cause an inflammatory response characterized by changes in leukocyte activity and profile (Titus *et al.*, 2024). On the fourth day after pathogen infection, WBC decreased in all treatments. This pattern aligns with the research findings of Azlan *et al.* (2021) that showed a decrease in WBC after infection. Bacterial infections in fish trigger mass migration of WBC from hematopoietic organs to inflamed tissues (Titus *et al.*, 2024). The decrease in WBC is likely related to their function in localizing and eliminating pathogens through phagocytosis (Soliman *et al.*, 2021). On the 7th day after experimental pathogen infection, WBC increased in all treatments, including the control (BT0). Fish given black ginger rhizome extract had higher WBC counts than those in the control. The contribution of black ginger rhizome extract to pathogen elimination is thought to have helped reduce the physiological stress on fish during pathogen elimination, thus allowing hematopoietic organs to produce higher WBC counts compared to the BT0.

CONCLUSION

The conclusion of this research is that the ethanol extract of black turmeric rhizome (*C. aeruginosa* Roxb) can be used to treat *A. hydrophila* infections in African catfish. A dose of 40 mg/L of ethanol extract of black turmeric rhizome applied through the immersion method was the best dose in this research for treating catfish infected with *A. hydrophila*.

ACKNOWLEDGEMENT

This research was conducted independently and funded by the research team, without financial support from any party. This published article is part of Riri Mulfiani's undergraduate thesis at the Aquaculture Department. We would like to thank the laboratory staff of the Faculty of Fisheries and Marine Sciences University of Halu Oleo for their assistance in this research.

REFERENCES

- Abidin, L. O. B., Nur, I., & Hamzah, M. (2022). Potensi Pengobatan Ekstrak Daun Tanaman Kumis Kucing (*Orthosiphon stamineus*) pada Ikan Lele (*Clarias gariepinus*) yang Terinfeksi Bakteri *Aeromonas hydrophila*. *Jurnal Media Akuatika*, 7(3), 108–118.
- Amaliah, D. (2019). Uji Fitokimia dan Aktivitas Antioksidan Ekstrak Metanol Rimpang Temu Hitam (*Curcuma aeruginosa* Roxb.). *Prosiding Seminar Nasional Kimia*, 23-26.
- Armin, Abidin, L. O. B., & Nur, I. (2023). Imunostimulasi Ikan Lele Dumbo (*Clarias gariepinus*) Menggunakan Pakan yang Difortifikasi Tepung Rimpang Jahe Merah dan Probiotik untuk Pengendalian Penyakit Infeksi Bakteri *Aeromonas hydrophilla*. *Jurnal Media Akuatika*, 8(2): 48-61.
- Awad, E. & Awaad, A. (2017). Role of Medicinal Plants on Growth Performance and Immune Status in Fish. *Fish & Shellfish Immunology*, 67, 40-54. doi: 10.1016/j.fsi.2017.05.034
- Azlan, Nur, I., & Abidin, L. O. B. (2021). Active Compounds and Immunostimulating Potential of *Holothuria scabra* Extract in Common Carp Fish (*Cyprinus carpio*) Against *Aeromonas hydrophila* Infection. International Journal of Zoology and Animal Biology, 4(1), 000271. doi: 10.23880/izab-16000271
- Cherian, T., Ragavendran, C., Vijayan, S., Kurien, S., & Peijnenburg, W. J. G. M. (2023). A Review on the Fate, Human Health and Environmental Impacts, as Well as Regulation of Antibiotics Used in Aquaculture. *Environmental Advances*, 13, 100411. doi: 10.1016/j.envadv.2023.100411
- Choy, K. W., Murugan, D., Leong, X. -F., Abas, R., Alias, A., & Mustafa, M. R. (2019). Flavonoids as Natural Anti-Inflammatory Agents Targeting Nuclear Factor-Kappa B (NFκB) Signaling in Cardiovascular Diseases: A Mini Review. *Frontiers in Pharmacology,* 10. doi: 10.3389/fphar.2019.01295
- Das, A., & Ruhal, R. (2025). Potential of Plants-based Alkaloids, Terpenoids and Flavonoids as Antibacterial Agents: An update. *Process Biochemistry*, 150, 94-120. doi: 10.1016/j.procbio.2025.01.003
- George, U. U., Ajayi, O. O., George, I. E., & Vincent, U. E. (2023). Establishing a Dose-Response Toxicity for *Clarias gariepinus* Fingerlings Exposed to Ethanolic Extract of *Lantana camara*. *Asian Journal of Fisheries and Aquatic Research*, 24(1), 1–10. doi: 10.9734/ajfar/2023/v24i1622
- Harikrishnan, R., Balasundaram, C., & Heo, M. S. (2011). Herbal Supplementation Diets on Hematology and Innate Immunity in Goldfish Against *Aeromonas hydrophila*. *Fish* & *Shellfish Immunology*, 30(3), 889–895. doi: 10.1016/j.fsi.2009.11.013
- Hasmin, Hamzah, M., & Abidin, L. O. B. (2025). Immunostimulation of Nile Tilapia Through the Provision of Synbiotic Feed (*Eleutherine bulbosa* and Probiotic) to Prevent Motile Aeromonas Septicemia (MAS) Disease. *Journal of Fish Health*, 5(3), 407-417. doi: 10.29303/jfh.v5i3.7650

- Kamazeri, T. S. A. T., Samah, O. A., Taher, M., Susanti, D., & Qaralleh, H. (2012). Antimicrobial Activity and Essential Oils of *Curcuma aeruginosa, Curcuma mangga,* and *Zingiber cassumunar* from Malaysia. *Asian Pacific Journal of Tropical Medicine,* 5(3), 202–209. doi: 10.1016/s1995-7645(12)60025-x
- Kusdarwati, R., Amin, M., & Wardana, A. B. (2021). DNase and Gelatinase Activities Of β-Hemolysin *Aeromonas hydrophila* Isolated from Catfish (*Clarias batrachus*). *Journal of Aquaculture and Fish Health*, 10(3), 331-340. doi: 10.20473/jafh.v10i3.25918
- Liu, X., Steele, J. C., & Meng, X. Z. (2017). Usage, Residue, and Human Health Risk of Antibiotics in Chinese Aquaculture: A review. *Environmental Pollution*, 223, 1–9. doi: 10.1016/j.envpol.2017.01.003
- Marliani, L., Sukmawati, I. K., Juanda, D., Anjani, E., & Anggraeni, I. (2021). Penapisan Fitokimia, Kadar Kurkuminoid dan Aktivitas Temu Hitam (*Curcuma aeruginosa* (Christm) Roscoe.), Temu Putih (*Curcuma zedoaria* Roxb.) dan Temulawak (*Curcuma xanthorrhiza* Roxb.). *Herb-Medicine Journal*, 4(1), 57–64.
- Ravindran, P. N., Babu, K. N., & Sivaraman, K. (2013). Turmeric: The Genus *Curcuma*. CRC Press. Rico, A., & Van den Brink, P. J. (2014). Probabilistic Risk Assessment of Veterinary Medicines Applied to Four Major Aquaculture Species Produced in Asia. *Science of The Total Environment*, 468, 630–641. doi: 10.1016/j.scitotenv.2013.08.063
- Shamsudin, N. F., Ahmed, Q. U., Mahmood, S., Ali Shah, S. A., Khatib, A., Mukhtar, S., Alsharif, M. A., Parveen, H., & Zakaria, Z. A. (2022). Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. *Molecules*, 27, 1149. doi: 10.3390/molecules27041149
- Soliman, A. M., Yoon, T., Wang, J., Stafford, J. L., & Barreda, D. B. (2021). Isolation of Skin Leukocytes Uncovers Phagocyte Inflammatory Responses During Induction and Resolution of Cutaneous Inflammation in Fish. *Front. Immunol.* 12, 725063. doi: 10.3389/fimmu.2021.725063
- Suyamud, B., Chen, Y., Quyen, D. T. T., Dong, Z., Zhao, C., & Hu, J. (2024). Antimicrobial Resistance in Aquaculture: Occurrence and Strategies in Southeast Asia. *Science of The Total Environment*, 907, 167942. doi: 10.1016/j.scitotenv.2023.167942
- Titus, J., Nayak, S., Sultan, E., Gershoni-Yahalom, O., Sinai, T., Zilberg, D., & Rosental, B. (2024). Development and Validation of a Flow Cytometry Method to Examine Circulating Leukocyte Subpopulations in Barramundi (*Lates calcarifer*). *Comparative Immunology Reports*, 6, 200142. doi: 10.1016/j.cirep.2024.200142
- Xie, Y., Yang, W., Tang, F., Chen, X., & Ren, L. (2015). Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. *Current Medicinal Chemistry*, 22(1), 132-149. doi: 10.2174/0929867321666140916113443
- Xiong, N. X., Luo, S. W., Fan, L. F., Mao, Z. W., Luo, K. K., Liu, S. J., Wu, C., Hu, F. Z., Wang, S., Wen, M., & Liu, Q. F. (2021). Comparative Analysis of Erythrocyte Hemolysis, Plasma Parameters and Metabolic Features in Red Crucian Carp (*Carassius auratus* red var) and Triploid Hybrid Fish Following *Aeromonas hydrophila* Challenge. *Fish & Shellfish Immunology*, 118, 369–384. doi: 10.1016/j.fsi.2021.09.025
- Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. *Antibiotics*, 10, 318. doi: 10.3390/antibiotics/10030318
- Yan, Y., Xia, X., Fatima, A., Zhang, L., Yuan, G., Lian, F., & Wang, Y. (2024). Antibacterial Activity and Mechanisms of Plant Flavonoids Against Gram-Negative Bacteria Based on the Antibacterial Statistical Model. *Pharmaceuticals*, 17(3), 292. doi: 10.3390/ph17030292

- Yang, W., Chen, X., Li, Y., Guo, S., Wang, Z., & Yu, X. (2020). Advances in Pharmacological Activities of Terpenoids. *Natural Product Communications*, 15(3). doi: 10.1177/1934578X20903555
- Yılmaz, E., & Tan, U. (2022). Effects of Medicinal Plants and Their Extracts as Dietary Additives on Fish Growth and Feed Efficiency in Turkish Aquaculture: a Review. *Aquatic Animal Reports*, 1(1), 34–51.
- Zhang, D., Xu, D. -H., & Shoemaker, C. (2016). Experimental Induction of Motile *Aeromonas septicemia* in Channel Catfish (*Ictalurus punctatus*) by Waterborne Challenge with Virulent *Aeromonas hydrophila*. *Aquaculture Reports*, 3, 18–23. doi: 10.1016/j.aqrep.2015.11.003
- Zulfiah, Megawati, Herman, Lau, S. H. A., Hasyim, M. F., Murniati, Roosevelt, A., Kadang, Y., Izza, N., & Patandung, G. (2020). Uji Toksisitas Ekstrak Rimpang Temu Hitam (*Curcuma aeruginosa* Roxb.) Terhadap Larva Udang (*Artemia salina* Leach) dengan Metode Brine Shrimp Lethality Test (BSLT). *Jurnal Farmasi Sandi Karsa*, 6(1): 44-49.